top of page

REFERENCES

  • ​Adam, S. N. F. S., Aiman, J. H. M., Zainuddin, F., & Hamdan, Y. (2021). Processing and Characterisation of Charcoal Briquettes Made from Waste Rice Straw as A Renewable Energy Alternative. Journal of Physics, 2080(1), 012014. https://doi.org/10.1088/1742-6596/2080/1/012014

  • AGRIS. (2012). Cogon (Imperata cylindrica (L.) Beauv.) [for cattle feeding]: for export - an ecological and economic evaluation [Philippines]. Food and Agriculture Organization of the United Nations. https://agris.fao.org/agris-search/search.do?recordID=PH19830927802

  • Ajimotokan, H. A., Ibitoye, S. E., Odusote, J. K., Adesoye, O. A., & Omoniyi, P. O. (2019). Physico-mechanical properties of composite briquettes from corncob and rice husk. Journal of Bioresources and Bioproducts, 4(3), 159-165.

  • Akintaro, A. O., Musab, A. I., Ajobo, J. A. and Oyewusi T. F. The Potentials of Using Carbonized Corncob to Produced Briquettes as an Alternative to Fuel wood. FUTA Journal of Research in Sciences. vol. 13, no. 1, pp.137-145, 2017.

  • Akpenpuun, T. D., Salau, R. A., Adebayo, A. O., Adebayo, O. M., Salawu, J., & Durotoye, M. (2020). Physical and combustible properties of briquettes produced from a combination of groundnut shell, rice husk, sawdust and wastepaper using starch as a binder. Journal of Applied Sciences and Environmental Management, 24(1), 171-177.

  • Amrullah, A., Syarief, A., & Saifudin, M. (2020). Combustion Behavior of Fuel Briquettes Made from Ulin Wood and Gelam Wood Residues. International Journal of Engineering. Transactions B: Applications. https://doi.org/10.5829/ije.2020.33.11b.27

  • Anatasya, A., Umiati, N. A. K., & Subagio, A. (2019b). The Effect of Binding Types on the Biomass Briquette Calorific Value from Cow Manure as a Solid Energy Source. E3S Web of Conferences, 125, 13004. https://doi.org/10.1051/e3sconf/201912513004

  • Arellano, G. M. T., Kato, Y., & Bacani, F. T. (2015). Evaluation of Fuel Properties of Charcoal Briquettes Derived From Combinations of Coconut Shell, Corn Cob and Sugarcane Bagasse. DLSU Research Congress, (3) 2015. https://www.semanticscholar.org/paper/Evaluation-of-Energy-Properties-of-Mixed-Biomass-Kongnine-Kpelou/c7921c3a6ca1ba397cfcc3ba333bbc27dc339ea3

  • Arnion. (2021, January 13). Bio Charcoal - miraculous of "Black gold" beston pyrolysis plant. Beston Pyrolysis Plant. https://bestonpyrolysisplant.com/bio-charcoal-miraculous-black-gold/ 

  • Bamisaye, A., & Rapheal, I. A. (2021). Effect of binder type on the NaOH-treated briquettes produced from banana leaves. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01771-9

  • Batidzirai, B., Mignot, A., Schakel, W., Junginger, H., & Faaij, A. (2013, December). Biomass torrefaction technology: Techno-economic status and future prospects. Energy, 62, 196–214. https://doi.org/10.1016/j.energy.2013.09.035

  • Bertoft, E. (2017). Understanding Starch Structure: Recent Progress. Agronomy, 7(3), 56. https://doi.org/10.3390/agronomy7030056

  • Bisht, S., Singh, S., & Kumar, R. (2014). Pine Needles A Source Of Energy For Himalayan Region. International Journal of Scientific & Technology Research, 3(12), 161–164. https://doi.org/10.1109/IICPE.2016.8079505

  • Borowski, G., Stępniewski, W., & Wójcik-Oliveira, K. (2017). Effect of starch binder on charcoal briquette properties. International Agrophysics, 31(4), 571–574. https://doi.org/10.1515/intag-2016-0077

  • Britannica. (2022). Coal types. Encyclopedia Britannica. https://www.britannica.com/science/coal-fossil-fuel/Coal-types#ref502549

  • Brunerová, A., Roubík, H., & Brožek, M. (2018). Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel. Energies, 11(9), 2186. https://doi.org/10.3390/en11092186

  • Carnaje, N. P., Talagon, R. B., Peralta, J. P., Shah, K., & Paz-Ferreiro, J. (2018, November 9). Development and characterisation of charcoal briquettes from water hyacinth (Eichhornia crassipes)-molasses blend. PLOS ONE, 13(11), e0207135. https://doi.org/10.1371/journal.pone.0207135

  • Charcoal Briquette Machinery. (2018, August 21). Binder and Additives Selection for Briquetting Plant. Engaged in Manufacturing & Marketing of Charcoal Briquette Project. https://www.charcoalbriquettemachine.com/news/binders-for-charcoal-briquettes.html

  • Chungcharoen, T., & Srisang, N. (2020). Preparation and characterization of fuel briquettes made from dual agricultural waste: Cashew nut shells and areca nuts. Journal of Cleaner Production, 256, 120434. https://doi.org/10.1016/j.jclepro.2020.120434

  • Climate Change Commission (CCC). (n. d.). NDC - Climate Change Commission. Climate Change Commission. https://niccdies.climate.gov.ph/files/documents/Philippines%20NDC%20Quick%20Facts.pdf

  • Climate Change Office-Climate Change Commission (CCC). (n. d.). Philippines Nationally Determined Contribution (NDC). National Integrated Climate Change Database and Information Exchange System (NICCDIES). https://niccdies.climate.gov.ph/files/documents/Philippines%20NDC%20Quick%20Facts.pdf

  • Dass, P.M., Nkafamiya, I.I., Thliza, B.A., & Joseph, J. (2019). Proximate Analysis of Biomass and Cotton Stalk Charcoal Briquettes Produced from Biu, Nganzai, and Zabarmari in Borno State using a Locally Fabricated Briquetting Machine.

  • Davies, R. M., & Davies, O. A. (2013). Physical and Combustion Characteristics of Briquettes Made from Water Hyacinth and Phytoplankton Scum as Binder. Journal of Combustion, 2013, 1–7. https://doi.org/10.1155/2013/549894

  • Department of Energy Philippines (DOE). (2017). Coal Roadmap 2017-2040 | Department of Energy Philippines. Department of Energy Philippines. https://www.doe.gov.ph/pep/coal-roadmap-2017-2040

  • Dey, D. C., Knapp, B. O., Battaglia, M. A., Deal, R. L., Hart, J. L., O’Hara, K. L., ... & Schuler, T. M. (2019). Barriers to natural regeneration in temperate forests across the USA. New Forests, 50(1), 11-40.

  • Di, S., Li, Y., Zhou, X., Zhang, J., Zhang, H., & Yu, J. (2021). Influence of Volatile Content on the Explosion Characteristics of Coal Dust. ACS Omega, 6(41), 27150–27157. https://doi.org/10.1021/acsomega.1c03803

  • DOE. (2011). Philippine Energy Plan 2012-2030. https://www.doe.gov.ph/sites/default/files/pdf/pep/2016-2030_pep.pdf

  • Dorez, G., Ferry, L., Sonnier, R., Taguet, A., & Lopez-Cuesta, J. (2014). Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 107, 323–331. https://doi.org/10.1016/j.jaap.2014.03.017

  • Dmitrienko, M. A., Nyashina, G. S., & Strizhak, P. A. (2017, September). Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals. Journal of Hazardous Materials, 338, 148–159. https://doi.org/10.1016/j.jhazmat.2017.05.031

  • Ejikeme, E. M., Enemuo, M. S., & Ejikeme, P. C. N. (2021). Thermal and Emission Characteristics of Carbonised and Uncarbonised Rice Husk Briquette, A Comparative Approach. NSChE Journal, 36(2), 10-19.

  • El-Ahmady, N., Deraz, S., & Khalil, A. (2013, December 15). Bioethanol Production from Lignocellulosic Feedstocks Based on Enzymatic Hydrolysis:   Current Status and Recent Developments. Biotechnology(Faisalabad), 13(1), 1–21. https://doi.org/10.3923/biotech.2014.1.21

  • Emrich, W. (2010, December 30). Handbook of Charcoal Making: The Traditional and Industrial Methods. Solar Energy R&D in the Ec Series E, 7. Springer.

  • Energiewende Team. (2016, July 11). A struggle between coal and renewable energy in the Philippines. Energy Transition. https://energytransition.org/2016/07/a-struggle-between-coal-and-renewable-energy-in-the-philippines/

  • Estrada, J. A., & Flory, S. L. (2015). Cogongrass (Imperata cylindrica) invasions in the US: mechanisms, impacts, and threats to biodiversity. Global Ecology and Conservation, 3, 1-10.

  • Feng, Q., Wang, B., Chen, M., Wu, P., Lee, X., & Xing, Y. (2021). Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review. Resources, Conservation and Recycling, 164, 105204.

  • Firley, S. E. W. T. C. (2016, August 9). Cogongrass Continues to Invade the South. CompassLive. https://www.srs.fs.usda.gov/compass/2016/08/09/cogongrass-continues-to-invade-the-south/

  • Frey, B. B. (2022). The SAGE Encyclopedia of Research Design. SAGE Publications.

  • Gilvari, H., de Jong, W., & Schott, D. L. (2019). Quality parameters relevant for densification of bio-materials: Measuring methods and affecting factors - A review. Biomass and Bioenergy, 120, 117–134. https://doi.org/10.1016/j.biombioe.2018.11.013

  • Guo, Z., Wu, J., Zhang, Y., Wang, F., Guo, Y., Chen, K., & Liu, H. (2020). Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel, 272, 117632. https://doi.org/10.1016/j.fuel.2020.117632

  • Haque, M. A., Barman, D. N., Kim, M. K., Yun, H. D., & Cho, K. M. (2015, June 25). Cogon grass (Imperata cylindrica), a potential biomass candidate for bioethanol: cell wall structural changes enhancing hydrolysis in a mild alkali pretreatment regime. Journal of the Science of Food and Agriculture, 96(5), 1790–1797. https://doi.org/10.1002/jsfa.7288

  • Hidayat, S., Bakar, M. S. A., Yang, Y., Phusunti, N., & Bridgwater, A. V. (2018). Characterisation and Py-GC/MS analysis of Imperata Cylindrica as potential biomass for bio-oil production in Brunei Darussalam. Journal of Analytical and Applied Pyrolysis, 134, 510-519.

  • Hussner, A., Stiers, I., Verhofstad, M. J. J. M., Bakker, E. S., Grutters, B. M. C., Haury, J., ... & Hofstra, D. (2017). Management and control methods of invasive alien freshwater aquatic plants: a review. Aquatic Botany, 136, 112-137.

  • Hu, Q., Shao, J., Yang, H., Yao, D., Wang, X., & Chen, H. (2015). Effects of binders on the properties of bio-char pellets. Applied Energy, 157, 508–516. https://doi.org/10.1016/j.apenergy.2015.05.019

  • Inegbedion, F., & Ikpoza, E. (2022). Estimation of the Moisture Content, Volatile Matter, Ash Content, Fixed Carbon and Calorific Values of Rice Husk Briquettes. In International Conference on Industrial Engineering and Operations Management. 

  • IUCN. (2022). Invasive alien species and climate change. https://www.iucn.org/resources/issues-brief/invasive-alien-species-and-climate-change

  • Kang, A., & Lee, T. S. (2015). Converting sugars to biofuels: ethanol and beyond. Bioengineering, 2(4), 184-203.

  • Kathuria, R. S. (2012). Using Agricultural Residues as a Biomass Briquetting: An Alternative Source of Energy. IOSR Journal of Electrical and Electronics Engineering, 1(5), 11–15. https://doi.org/10.9790/1676-0151115

  • Katimbo, A., Kiggundu, N., Kizito, S., Kivumbi, H. B., & Tumutegyereize, P. (2014). Potential of densification of mango waste and effect of binders on produced briquettes. Agricultural Engineering International: The CIGR Journal, 16(4), 146–155. http://cigrjournal.org/index.php/Ejounral/article/viewFile/2945/1977

  • Kivumbi, B., Jande, Y. A. C., Kirabira, J. B., & Kivevele, T. T. (2021). Production of carbonized briquettes from charcoal fines using African Elemi (Canarium Schweinfurthii) resin as an organic binder. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–17. https://doi.org/10.1080/15567036.2021.1977870

  • Kongnine, D. M., Kpelou, P., Attah, N., & Mouzou, E. (2021). Evaluation of Energy Properties of Mixed Biomass Charcoal Derived from Coconut, Palmyra Palm Nuts and Doum Palm Nuts Shells. Science Journal of Energy Engineering, 9(2), 17. https://doi.org/10.11648/j.sjee.20210902.11

  • Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2020b). A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability, 12(11), 4609. https://doi.org/10.3390/su12114609

  • Kurchania, A. K. (2012). Biomass energy. In Biomass Conversion, 91-122. Springer, Berlin, Heidelberg.

  • Khalid, F. E., Ahmad, S. A., Zakaria, N. N., Shaharuddin, N. A., Sabri, S., Azmi, A. A., Khalil, K. A., Verasoundarapandian, G., Gomez-Fuentes, C., & Zulkharnain, A. (2021, November 10). Application of Cogon Grass (Imperata cylindrica) as Biosorbent in Diesel-Filter System for Oil Spill Removal. Agronomy, 11(11), 2273. https://doi.org/10.3390/agronomy11112273

  • Lu, X., & Gu, X. (2022). A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency. Biotechnology for Biofuels and Bioproducts, 15(1). https://doi.org/10.1186/s13068-022-02203-0

  • Lubwama, M., & Yiga, V. A. (2018). Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda. Renewable Energy, 118, 43–55. https://doi.org/10.1016/j.renene.2017.11.003

  • Lubwama, M., Yiga, V. A., Muhairwe, F., & Kihedu, J. (2020). Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renewable Energy, 148, 1002–1016. https://doi.org/10.1016/j.renene.2019.10.085

  • Marreiro, H. M. P., Peruchi, R. S., Lopes, R. M. B. P., Andersen, S. L. F., Eliziário, S. A., & Rotella Junior, P. (2021b). Empirical Studies on Biomass Briquette Production: A Literature Review. Energies, 14(24), 8320. https://doi.org/10.3390/en14248320

  • MET Group. (2020, November 20). Natural gas vs Coal – environmental impacts. https://group.met.com/en/mind-the-fyouture/mindthefyouture/natural-gas-vs-coal

  • Mondal, M. A. H., Rosegrant, M., Ringler, C., Pradesha, A., & Valmonte-Santos, R. (2018, March). The Philippines energy future and low-carbon development strategies. Energy, 147, 142–154. https://doi.org/10.1016/j.energy.2018.01.039

  • Montiano, M., Fernández, A., Díaz-Faes, E., & Barriocanal, C. (2015). Tar from biomass/coal-containing briquettes. Evaluation of PAHs. Fuel, 154, 261–267. https://doi.org/10.1016/j.fuel.2015.03.067

  • Mouritz, A. (2007). Durability of composites exposed to elevated temperature and fire. Durability of Composites for Civil Structural Applications, 98–125. https://doi.org/10.1533/9781845693565.1.98

  • National Geographic. (n.d.). Biomass energy. National Geographic Society. https://education.nationalgeographic.org/resource/biomass-energy/

  • Ndindeng, S., Mbassi, J., Mbacham, W., Manful, J., Graham-Acquaah, S., Moreira, J., Dossou, J., & Futakuchi, K. (2015). Quality optimization in briquettes made from rice milling by-products. Energy for Sustainable Development, 29, 24–31. https://doi.org/10.1016/j.esd.2015.09.003

  • NSW Department of Primary Industries. (n.d.). https://www.dpi.nsw.gov.au/content/research/topics/biochar

  • Nurhayati, A. Y., Hariadi, Y. C., & Hasanah, W. (2016). Endeavoring to Food Sustainability by Promoting Corn Cob and Rice Husk Briquetting to Fuel Energy for Small Scale Industries and Household Communities. Agriculture and Agricultural Science Procedia, 9, 386–395. https://doi.org/10.1016/j.aaspro.2016.02.154

  • Obi, O. F., Pecenka, R., & Clifford, M. J. (2022, March 25). A Review of Biomass Briquette Binders and Quality Parameters. Energies, 15(7), 2426. https://doi.org/10.3390/en15072426

  • Okwu, M. O., & Samuel, O. D. (2018). Adapted hyacinth briquetting machine for mass production of briquettes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(23), 2853–2866. https://doi.org/10.1080/15567036.2018.1512681

  • Onchieku, J., Chikamai, B., & Rao, M. (2012). Optimum Parameters for the Formulation of Charcoal Briquettes Using Bagasse and Clay as Binder. European Journal of Sustainable Development, 1(3), 477. https://doi.org/10.14207/ejsd.2012.v1n3p477

  • Oyelaran, O.A., Bolaji, B.O., Waheed, M.A., Adekunle, M.F. (2015). Performance evaluation of the effect of binder on groundnut shell briquette. KMUTNB International Journal of Applied Science and Technology, 1–9. https://doi.org/10.14416/j.ijast.2014.11.004

  • Palanca, A. G., Leon, R. L. D., & Jose, W. I. (2018). Torrefied Cogon grass: Effects of torrefaction on fuel properties of solid and condensate products. International Journal of Smart Grid and Clean Energy, 7(1), 1–12. https://doi.org/10.12720/sgce.7.1.1-12

  • Patiga, E. M., Bestil, L. C., & Mondejar, H. P. (2020). In Situ Digestibility of Cogon Grass (Imperata cylindrica L.) in Various Forms and Harvesting Intervals in Rumen-Fistulated Brahman Cattle. Mindanao Journal of Science and Technology, 18(2).

  • Promdee, K., & Vitidsant, T. (2013, May). Preparation of Biofuel by Pyrolysis of Plant Matter in a Continuous Reactor. Theoretical and Experimental Chemistry, 49(2), 126–129. https://doi.org/10.1007/s11237-013-9305-y

  • Promdee, K., Boonmee, C., Satitkune, S., & Vitidsant, T. (2015). Study on SEM and EDS Pattern of Charcoal Derived from Cogongrass by Pyrolysis in a Continuous Reactor. Applied Mechanics and Materials, 719–720, 77–81. https://doi.org/10.4028/www.scientific.net/amm.719-720.77

  • Qi, J., Li, H., Wang, Q., & Han, K. (2021). Combustion Characteristics, Kinetics, SO2 and NO Release of Low-Grade Biomass Materials and Briquettes. Energies, 14(9), 2655. https://doi.org/10.3390/en14092655

  • Rezania, S., Md Din, M. F., Kamaruddin, S. F., Taib, S. M., Singh, L., Yong, E. L., & Dahalan, F. A. (2016). Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production. Energy, 111, 768–773. https://doi.org/10.1016/j.energy.2016.06.026

  • Romallosa, A., & Kraft, E. (2017, February 24). Feasibility of Biomass Briquette Production from Municipal Waste Streams by Integrating the Informal Sector in the Philippines. Resources, 6(1), 12. https://doi.org/10.3390/resources6010012

  • Schott, D. L., Tans, R., Dafnomilis, I., Hancock, V., & Lodewijks, G. (2016). Assessing a Durability Test for Wood Pellets by Discrete Element Simulation. FME Transactions, 44(3), 279–284. https://doi.org/10.5937/fmet1603279S

  • Sells, S. M., Held, D. W., Enloe, S. F., Loewenstein, N. J., & Eckhardt, L. G. (2015). Impact of cogongrass management strategies on generalist predators in cogongrass-infested longleaf pine plantations. Pest management science, 71(3), 478–484. https://doi.org/10.1002/ps.3951

  • Senchi, D. S., & Kofa, I. D. (2020). Comparative Studies of Water Boiling Test and Ignition Time of Carbonized Rice Husk Using Starch And Gum Arabic As Adhesives - IRE Journals. IRE Journals, 4(1), 27–32. https://www.irejournals.com/formatedpaper/1702410.pdf

  • Shaltout, K. H., Galal, T. M., & El-Komi, T. M. (2016). Phenology, biomass and nutrients of Imperata cylindrica and Desmostachya bipinnata along the water courses in Nile Delta, Egypt. Rendiconti Lincei, 27(2), 215-228.

  • Shone, C. M., & Jothi, T. J. S. (2015). Preparation of gasification feedstock from leafy biomass. Environmental Science and Pollution Research, 23(10), 9364–9372. https://doi.org/10.1007/s11356-015-5167-2

  • StuartXchange. (n. d.). Kogon / Imperata cylindrica / Cogon grass - StuartXchange. StuartXchange. http://www.stuartxchange.org/Kogon 

  • Sukarni, S., Zakaria, Y., Sumarli, S., Wulandari, R., Permanasari, A. A., & Suhermanto, M. (2019). Physical and Chemical Properties of Water Hyacinth (Eichhornia crassipes) as a Sustainable Biofuel Feedstock. IOP Conference Series, 515, 012070. https://doi.org/10.1088/1757-899x/515/1/012070

  • Tanpichai, S., Witayakran, S., & Yano, H. (2019). Water Hyacinth: A Sustainable Lignin-Poor Cellulose Source for the Production of Cellulose Nanofibers. ACS Sustainable Chemistry & Engineering, 7(23), 18884–18893. https://doi.org/10.1021/acssuschemeng.9b04095

  • U.S. Energy Information Administration. (2020, November 12). Philippines - EIA. International - U.S. Energy Information Administration (EIA). https://www.eia.gov/international/analysis/country/PHL

  • University of Kentucky. (2016). Moisture in Coal. Kentucky Geological Survey. https://www.uky.edu/KGS/coal/coal-analyses-moisture.php

  • Velusamy, S., Subbaiyan, A., & Thangam, R. S. (2021). Combustion characteristics of briquette fuels from sorghum panicle–pearl millets using cassava starch binder. Environmental Science and Pollution Research, 28(17), 21471–21485. https://doi.org/10.1007/s11356-020-11790-0

  • Walter, R., & Rao, B. R. (2015). Biochars influence sweet‐potato yield and nutrient uptake in tropical Papua New Guinea. Journal of Plant Nutrition and Soil Science, 178(3), 393-400. https://doi.org/10.1002/jpln.201400405

  • Wirabuana, A. D., & Alwi, R. S. (2021). Influence of starch binders composition on properties of biomomass briquettes from Durian peel (Durio kutejensis Becc). 4TH INTERNATIONAL SEMINAR ON CHEMISTRY. https://doi.org/10.1063/5.0051733

  • Yank, A., Ngadi, M., & Kok, R. (2016). Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass and Bioenergy, 84, 22–30. https://doi.org/10.1016/j.biombioe.2015.09.015

  • Ycaza, S. R. & Barre, J. T. (2018). Charcoal Briquettes Manufactured from Dried Mango Leaves (DML)– An Alternative Solid Fuel Source. Ciencia, 37, 13-24. www.wmsu.edu.ph/research_journal

  • Ying, X., Tiejun, W., Longlong, M., & Guanyi, C. (2012). Upgrading of fast pyrolysis liquid fuel from biomass over Ru/γ-Al2O3 catalyst. Energy conversion and management, 55, 172-177.

  • Zafar, S. (2021, December 14). Biomass Energy Potential in Philippines. BioEnergy Consult. https://www.bioenergyconsult.com/biomass-philippines/

  • Zakaria, I. H., Ibrahim, J. A., & Othman, A. A. (2018). Introducing briquette storage system in value chain of oil palm fiber waste for optimal electricity grid supply: Biogas. AIP Conference Proceedings. https://doi.org/10.1063/1.5055558

  • Zarib, N. S. M., Abdullah, S., & Jusri, N. a. A. (2020). Effect of Acid Treatment on Extraction of Silica from Cogon Grass by Using C6H8O7 and HCL Acid. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899x/834/1/012067

  • Zhang, G., Sun, Y., & Xu, Y. (2018). Review of briquette binders and briquetting mechanism. Renewable and Sustainable Energy Reviews, 82, 477–487. https://doi.org/10.1016/j.rser.2017.09.072

  • Zhang, L., Larsson, A., Moldin, A., & Edlund, U. (2022). Comparison of lignin distribution, structure, and morphology in wheat straw and wood. Industrial Crops and Products, 187, 115432. https://doi.org/10.1016/j.indcrop.2022.115432

  • Zhao, C., Jiang, E., & Chen, A. (2016). Volatile production from pyrolysis of cellulose, hemicellulose and lignin. Journal of the Energy Institute, 90(6), 902–913. https://doi.org/10.1016/j.joei.2016.08.004

bottom of page